

Overview

The LC72321N, LC72322N, and LC72323N are singlechip microcontrollers designed for electronic tuning in radio receivers and include an on-chip LCD driver circuit and a PLL circuit that operates at 150 MHz . These microcontrollers feature a large program ROM capacity, an efficient instruction set, and powerful hardware. Note that the LC72321N, LC72322N, and LC72323N provide functions equivalent to the LC72321, LC72322, and LC72323, and are software compatible with those products.

Functions

- Serial I/O (LC72321N only)
- Timers: $80 \mu \mathrm{~s}, 1 \mathrm{~ms}, 2 \mathrm{~ms}$, and 5 ms periods
- Stack levels: 8 levels
- Beep tone outputs:

Six frequencies ($2.08,2.25,2.5,3.0,3.75$, and 4.17 kHz) (LC72321N only)

- High-speed programmable divider
- General-Purpose counters

HCTR: Frequency measurement
LCTR: Frequency or period measurement

- LCD drive circuit: Drives 56 segments with 1/2-duty 1/2-bias drive
- Program memory (ROM):

16 bits $\times 4095$ words (8 K bytes) LC72321N and LC72322N
16 bits $\times 3071$ words (6 K bytes) LC72323N

- Data memory (RAM): 4 bits $\times 256$ words
- All instructions are single-word instructions.
- CCB is a trademark of SANYO ELECTRIC CO., LTD.
- CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.
- Cycle times: $2.67 \mu \mathrm{~s}, 13.33 \mu \mathrm{~s}$, or $40.00 \mu \mathrm{~s}$ (option)
- Unlock flip-flop: $0.55 \mu \mathrm{~s}$ and $1.1 \mu \mathrm{~s}$ detection
- Timer flip-flop: $1 \mathrm{~ms}, 5 \mathrm{~ms}, 25, \mathrm{~ms}$, and 125 ms
- Input ports*: One dedicated key input port, and one high-voltage port
- Output ports*:

Two dedicated key output ports, one high-voltage opendrain port
Two CMOS output ports (one of which can be switched over to function as an LCD driver output)
Seven CMOS output ports (Switching these ports over to function as LCD driver outputs is supported as an option.)

- I/O ports*:

One port switchable between input and output in 4-bit units One port switchable between input and output in 1-bit units
*: Each port consists of 4 bits.
Continued to next page.

Package Dimensions

unit: mm

3174-QFP80E

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
\square SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Continued from preceding page.

- Function that detects uncontrolled looping and jumps to a specified address
- Voltage detection reset circuit
- One 6-bit A/D converter
- Two 8-bit A/D converters (PWM) (LC72321N and LC72322N only)
- One external interrupt (The external interrupt can be selected to be one of the following: an external interrupt,
an internal timer interrupt, or the serial I/O circuit (in the LC72321N).)
- RAM data retention in hold mode
- Sensing flip-flop for hot/cold start discrimination
- PLL: 4.5 to 5.5 V
- CPU: 3.5 to 5.5 V
- RAM: 1.3 to 5.5 V

Pin Assignment

[^0]
Block Diagram

Notes:*1. Only possible with the LC72321N
*2. Only possible with the LC72321N and LC72322N

Specifications
Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Rating	Unit
Maximum supply voltage	V_{DD} max		-0.3 to +6.5	V
Input voltage	$\mathrm{V}_{\text {IN }} 1$	$\overline{\text { HOLD }}, \overline{\mathrm{INT}}, \overline{\mathrm{RES}}, \mathrm{ADI}, \overline{\mathrm{SNS}}$ Port G	-0.3 to +13	V
	$\mathrm{V}_{\mathrm{IN}} 2$	Inputs other than $\mathrm{V}_{\mathbb{N}} 1$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output voltage	$\mathrm{V}_{\text {OUT }} 1$	Port H	-0.3 to +15	V
	$\mathrm{V}_{\text {OUT }}{ }^{2}$	Outputs other than $\mathrm{V}_{\text {OUT }} 1$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output current	lout1	All the port D and H pins	0 to 5	mA
	lout2	All the port E and F pins	0 to 3	mA
	Iout3	All the port B and C pins	0 to 1	mA
	lout4	S1 to S28 and port I	0 to 1	mA
Allowable power dissipation	Pd max	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$	300	mW
Operating temperature	Topr		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-45 to +125	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.5$ to 5.5 V

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Supply voltage	$\mathrm{V}_{\mathrm{DD}} 1$	CPU and PLL operating	4.5		5.5	V
	$\mathrm{V}_{\mathrm{DD}}{ }^{2}$	CPU operating	3.5		5.5	V
	$\mathrm{V}_{\mathrm{DD}}{ }^{3}$	Memory retention	1.3		5.5	V
High-level input voltage	$\mathrm{V}_{\mathrm{HH} 1}$	Port G	$0.7 \mathrm{~V}_{\mathrm{DD}}$		8.0	V
	$\mathrm{V}_{\mathrm{H}}{ }^{2}$	RES, $\overline{\text { INT, }}$, HOLD	$0.8 \mathrm{~V}_{\mathrm{DD}}$		8.0	V
	$\mathrm{V}_{\mathrm{HH}^{3}}$	$\overline{\text { SNS }}$	2.5		8.0	V
	$\mathrm{V}_{1 \mathrm{H}} 4$	Port A	$0.6 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V
	$\mathrm{V}_{1 \mathrm{H}} 5$	Ports E and F	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$V_{\text {DD }}$	V
	$\mathrm{V}_{\mathrm{HH}} 6$	LCTR (period measurement), $\mathrm{V}_{\text {DD }} 1$, PE1, and PE3	$0.8 \mathrm{~V}_{\mathrm{DD}}$		$V_{\text {DD }}$	V
Low-level input voltage	$\mathrm{V}_{\text {IL }} 1$	Port G	0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\mathrm{IL}} 2$	$\overline{\mathrm{RES}}, \mathrm{INT}, \mathrm{PE} 1, \mathrm{PE} 3$	0		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\text {IL }} 3$	$\overline{\text { SNS }}$	0		1.3	V
	$\mathrm{V}_{\text {IL }} 4$	Port A	0		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\text {IL }} 5$	PE0, PE2, and port F	0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\text {IL }} 6$	LCTR (period measurement) and $\mathrm{V}_{\text {DD }} 1$	0		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\text {IL }} 7$	HOLD	0		$0.4 \mathrm{~V}_{\mathrm{DD}}$	V
Input frequency	fiN^{1}	XIN	4.0	4.5	5.0	MHz
	$\mathrm{f}_{\mathrm{IN}} 2$	FMIN, $\mathrm{V}_{\mathrm{IN}} 2, \mathrm{~V}_{\mathrm{DD}} 1$	10		130	MHz
	fin^{3}	FMIN, $\mathrm{V}_{\text {IN }} 3, \mathrm{~V}_{\text {DD }} 1$	10		150	MHz
	fin^{4}	AMIN (L), $\mathrm{V}_{\text {IN }} 4, \mathrm{~V}_{\text {DD }} 1$	0.5		10	MHz
	fin^{5}	$\operatorname{AMIN}(\mathrm{H}), \mathrm{V}_{\text {IN }} 5, \mathrm{~V}_{\text {DD }} 1$	2.0		40	MHz
	$\mathrm{f}_{\text {IN } 6}$	HCTR, $\mathrm{V}_{\text {IN }} 6, \mathrm{~V}_{\text {DD }} 1$	0.4		12	MHz
	fin^{7}	LCTR (frequency), $\mathrm{V}_{\text {IN }} 7$, and $\mathrm{V}_{\text {DD }} 1$	100		500	kHz
	fin^{8}	LCTR (period), $\mathrm{V}_{\text {IH }} 6, \mathrm{~V}_{\text {IL }} 6$, and $\mathrm{V}_{\text {DD }} 1$	1		20×10^{3}	Hz
Input amplitude	$\mathrm{V}_{\text {IN } 1}$	XIN	0.50		1.5	Vrms
	$\mathrm{V}_{1 \times} 2$	FMIN	0.10		1.5	Vrms
	$\mathrm{V}_{\text {IN }} 3$	FMIN	0.15		1.5	Vrms
	$\mathrm{V}_{\text {IN }} 4,5$	AMIN	0.10		1.5	Vrms
	$\mathrm{V}_{1 \mathrm{IN}} 6,7$	LCTR, HCTR	0.10		1.5	Vrms
Input voltage range	$\mathrm{V}_{\text {IN }} 8$	ADI	0		VDD	V

Electrical Characteristics in the Allowable Operating Ranges

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Hysteresis	V_{H}	LCTR(period), $\overline{\text { RES }}$, INT, PE1, PE3 $0.1 \mathrm{~V}_{\text {DD }}$			V	
Rejected pulse width	$\mathrm{P}_{\text {REJ }}$	SNS			50	$\mu \mathrm{s}$
Power down detection voltage	$\mathrm{V}_{\text {DET }}$		2.7	3.0	3.3	V
High-level input current	$\mathrm{l}_{\mathrm{H} 1}$	$\overline{\mathrm{INT}}, \overline{\mathrm{HOLD}}, \overline{\mathrm{RES}}, \mathrm{ADI}, \overline{\mathrm{SNS}}$, port G: $\mathrm{V}_{1}=5.5 \mathrm{~V}$			3.0	$\mu \mathrm{A}$
	I_{1+2}	Ports A, E, and F: with ports E and F set to output off, with the port A R R_{PD} disabled, $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$			3.0	$\mu \mathrm{A}$
	IIH^{3}	$\mathrm{XIN}: \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	2.0	5.0	15	$\mu \mathrm{A}$
	$\mathrm{l}_{1 \mathrm{H}^{4}}$	FMIN, AMIN, HCTR, LCTR: $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	4.0	10	30	$\mu \mathrm{A}$
	$\mathrm{I}_{1 \mathrm{H} 5}$	Port A: R $\mathrm{P}_{\text {PD }}$ enabled, $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		50		$\mu \mathrm{A}$
Low-level input current	$\mathrm{I}_{\text {IL }} 1$	$\overline{\text { INT, }}$,			3.0	$\mu \mathrm{A}$
	$\mathrm{l}_{1 L}{ }^{2}$	Ports A, E, and F: with ports E and F set to output off, with the port $A R_{P D}$ disabled, $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}$			3.0	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }} 3$	XIN: $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	2.0	5.0	15	$\mu \mathrm{A}$
	ILL $^{\text {4 }}$	FMIN, AMIN, HCTR, LCTR: $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {SS }}$	4.0	10	30	$\mu \mathrm{A}$
Input floating voltage	$\mathrm{V}_{\text {IF }}$	Port A: R $\mathrm{RPD}^{\text {enabled }}$			$0.05 \mathrm{~V}_{\mathrm{DD}}$	V
Pull-down resistance	R_{PD}	Port A: R RD enabled, $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	75	100	200	$\mathrm{k} \Omega$
High-level output off leakage current	$\mathrm{l}_{\text {OFFH }}{ }^{1}$	EO1, EO2: $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$		0.01	10	nA
	loffr2	Ports B, C, D, E, F, and I: $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$			3.0	$\mu \mathrm{A}$
	loffh3	Port H: $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
Low-level output off leakage current	loffL 1	EO1, EO2: $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {SS }}$		0.01	10	nA
	loffL2	Ports B, C, D, E, F, and I: $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {SS }}$			3.0	$\mu \mathrm{A}$
High-level output voltage	$\mathrm{V}_{\mathrm{OH} 1}$	Ports B and C: $\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	$V_{D D}-2.0$	$V_{D D}-1.0$	$V_{D D}-0.5$	V
	$\mathrm{V}_{\mathrm{OH}}{ }^{2}$	Ports E and F: $\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	$V_{D D}-1.0$			V
	$\mathrm{V}_{\mathrm{OH}} 3$	EO1, EO2: $\mathrm{I}_{0}=500 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{DD}}-1.0$			V
	$\mathrm{V}_{\mathrm{OH} 4}$	XOUT: $\mathrm{I}_{0}=200 \mu \mathrm{~A}$	$V_{D D}-1.0$			V
	$\mathrm{V}_{\mathrm{OH}} 5$	S1 to S28 and port I: $\mathrm{I}_{0}=-0.1 \mathrm{~mA}$	$V_{D D}-1.0$			V
	$\mathrm{V}_{\mathrm{OH}} 6$	Port D: $\mathrm{I}_{0}=5 \mathrm{~mA}$	$V_{D D}-1.0$			V
	$\mathrm{V}_{\mathrm{OH}} 7$	COM1, COM2: l O $=25 \mu \mathrm{~A}$	$V_{D D}-0.75$	$\mathrm{V}_{\mathrm{DD}}-0.5$	$V_{D D}-0.3$	V
Low-level output voltage	$\mathrm{V}_{\mathrm{OL}} 1$	Ports B and C: $\mathrm{I}_{\mathrm{O}}=50 \mu \mathrm{~A}$	0.5	1.0	2.0	V
	$\mathrm{V}_{\mathrm{OL}} 2$	Ports E and F: $\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$			1.0	V
	$\mathrm{V}_{\text {oL }}$	EO1, EO2: l O $=500 \mu \mathrm{~A}$			1.0	V
	$\mathrm{V}_{\text {OL }} 4$	XOUT: $\mathrm{I}_{\mathrm{O}}=200 \mu \mathrm{~A}$			1.0	V
	$\mathrm{V}_{\mathrm{OL}} 5$	S1 to S28 and port $\mathrm{I}: \mathrm{I}_{\mathrm{O}}=0.1 \mathrm{~mA}$			1.0	V
	VoL6	Port D: $\mathrm{I}_{0}=5 \mathrm{~mA}$			1.0	V
	$\mathrm{V}_{\text {OL7 }}$	COM1, COM2: $\mathrm{I}_{\mathrm{O}}=25 \mu \mathrm{~A}$	0.3	0.5	0.75	V
	$\mathrm{V}_{\text {OL }} 8$	Port $\mathrm{H}: \mathrm{l}_{\mathrm{O}}=5 \mathrm{~mA}$	$\begin{array}{r} (150 \Omega) \\ 0.75 \end{array}$		$\begin{array}{r} (400 \Omega) \\ 2.0 \end{array}$	V
Output middle level voltage A/D converter error	$\mathrm{V}_{\mathrm{M}} 1$	COM1, COM2: $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A}$	2.0	2.5	3.0	V
		ADI: $\mathrm{V}_{\text {DD } 1}$	-1/2		+1/2	LSB
Current drain	IDD1	$\mathrm{V}_{\text {DD }} 1, \mathrm{f}_{\mathrm{IN} 2}=130 \mathrm{MHz}$		15	20	mA
	IDD2	$V_{D D} 2$, PLL circuit stopped, $C T=2.67 \mu \mathrm{~s}$ (hold mode, see figure 1)		1.5		mA
	$\mathrm{I}_{\mathrm{D}} 3$	$V_{D D} 2$, PLL circuit stopped, CT $=13.33 \mu \mathrm{~s}$ (hold mode, see figure 1)		1.0		mA
	$\mathrm{I}_{\mathrm{DD} 4}$	$\mathrm{V}_{\mathrm{DD}} 2$, PLL circuit stopped, $\mathrm{CT}=40.00 \mu \mathrm{~s}$ (hold mode, see figure 1)		0.7		mA
	$\mathrm{I}_{\mathrm{D}} 5$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$, oscillator circuit stopped, $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (backup mode, see figure 2)			5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$, oscillator circuit stopped, $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (backup mode, see figure 2)			1	$\mu \mathrm{A}$

Test Circuit Diagrams

Note: PB to PF, PH, and PI must all be left open. However, PE and PF should be selected for output.
Figure $1 I_{D D} 2$ to $I_{D D} 4$ in Hold Mode

Note: PA to PI, S1 to S24, COM1, and COM2 must all be left open.
Figure $2 I_{D D} 5$ in Backup Mode

Pin Function

Pin No.	Pin	Description	I/O	I/O circuit
$\begin{aligned} & 35 \\ & 34 \\ & 33 \\ & 32 \end{aligned}$	$\begin{aligned} & \text { PA0 } \\ & \text { PA1 } \\ & \text { PA2 } \\ & \text { PA3 } \end{aligned}$	Low-threshold input-only port. Can be used for functions such as key data acquisition. Pull-down resistors can be specified as an option. This option is specified in a 4-pin unit, and cannot be specified in single pin units. Input is disabled in backup mode.	Input	
30 29 28 27 26 25 24 23	PB0 PB1 PB2 PB3 PC0 PC1 PC2 PC3 \qquad PDO PD1 PD2 PD3	Output-only ports. Since the output transistor circuits are unbalanced CMOS outputs, these outputs can be effectively used for functions such as key scan timing. These ports go to the high-impedance state in backup mode. These $\overline{\text { ports }}$ output a low level after a reset (when RES is set low). Output-only port. These are normal CMOS outputs. This port goes to the high-impedance state in backup mode. This port outputs a low level after a reset (when $\overline{\mathrm{RES}}$ is set low).	Output	 BACK UP
$\begin{aligned} & 18 \\ & 17 \\ & 16 \\ & 15 \end{aligned}$	$\begin{gathered} \mathrm{PEO} \\ \mathrm{PE} 1 / \overline{\mathrm{SCK}} \\ \mathrm{PE} 2 / \mathrm{SO} \\ \mathrm{PE} 3 / \mathrm{SI} \end{gathered}$	I/O port. The input/output state is selected as follows: Once an input instruction (IN, TPT, or TPF) is executed, the port switches to the input state and remains in that state. Once an output instruction (OUT, SPB, RPB) is executed, the port switches to the output state and remains in that state. Note that PE1, PE2, and PE3 are also used as the serial I/O port. These pins go to the input state after a reset. This port goes to the input state with input disabled in backup mode.	I/O	PE1,PE3
$\begin{aligned} & 14 \\ & 13 \\ & 12 \\ & 11 \end{aligned}$	PFO PF1 PF2 PF3	I/O port. The FPC instruction is used for switching the port function between input and output. Input or output can be specified in single pin units. This port is set to its input function after a reset. This port goes to the input state with input disabled in backup mode.		
$\begin{aligned} & 6 \\ & 5 \\ & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { PG0 } \\ & \text { PG1 } \\ & \text { PG2 } \\ & \text { PG3 } \end{aligned}$	Input-only port. Input is disabled in backup mode.	Input	

Continued on next page

Continued from preceding page.

Pin No.	Pin	Description	1/O	I/O circuit
$\begin{gathered} 10 \\ 9 \\ 8 \\ 7 \end{gathered}$	$\begin{gathered} \text { PH0 } \\ \text { PH1/BEEP*1 } \\ \text { PH2/DAC1*2 } \\ \text { PH3/DAC2*2 } \end{gathered}$	Output-only port. Since these ports are high-voltage handling n-channel transistor open-drain outputs, they are effective for use in band power supply switching. Note that PH1, PH2, and PH3 have shared functions as the BEEP*1, DAC1, and DAC2 outputs, respectively.*2 This port goes to the high-impedance state in backup mode and after a reset (when the $\overline{\mathrm{RES}}$ pin is set low).	Output	
$\begin{aligned} & 39 \\ & 38 \\ & 37 \\ & 36 \end{aligned}$	$\begin{aligned} & \mathrm{PIO} / \mathrm{S} 25 \\ & \mathrm{PI} 1 / \mathrm{S} 26 \\ & \mathrm{PI} 2 / \mathrm{S} 27 \\ & \mathrm{PI} / \mathrm{S} 28 \end{aligned}$	Output-only port. These pins are CMOS outputs, but can be switched to function as LCD driver outputs. The SS and RS instructions are used to switch the port function. The port function cannot be switched in single pin units. The LCD driver function is selected and a display off signal is output when RES is low and when power is first applied. In backup mode the output is held at the low level. Note that when use as a general-purpose port is specified as an option, the contents of IPORT are output when LPC is 1 , and the contents of the generalpurpose output port latch is are output when LPC is 0 .	Output	
63 to 40	S1 to S24	LCD driver segment outputs. The fame frequency is 100 Hz . The drive type is $1 / 2$-duty $1 / 2$-bias drive. A display off signal is output when $\overline{\text { RES }}$ is low and when power is first applied. In backup mode the outputs are held at the low level. An option is available that allows these pins to be used as general-purpose outputs.	Output	
$\begin{aligned} & 65 \\ & 64 \end{aligned}$	$\begin{aligned} & \text { COM1 } \\ & \text { COM2 } \end{aligned}$	LCD driver common outputs. The drive type is $1 / 2$-duty $1 / 2$-bias drive. These pins output the same signal as is output during normal operation when $\overline{\mathrm{RES}}$ is low and when power is first applied. In backup mode these outputs are held at the low level.	Output	
74	FM IN	FM VCO (local oscillator) input. Input must be supplied through a coupling capacitor. The input frequency range is 10 to 130 MHz .		
75	AM IN	AM VCO (local oscillator) input. Input must be supplied through a coupling capacitor. The pin frequency band can be selected with the PLL instruction CW1 bit. High (2 to 40 MHz) \rightarrow SW Low (0.5 to 10 MHz) \rightarrow LW and MW	Input	

Notes:*1. Only supported by the LC72321N
Continued on next page.
*2. Only supported by the LC72321N and LC72322N

Continued from preceding page.

Pin No.	Pin	Description	1/O	I/O circuit
70	HCTR	Universal counter input. Input must be supplied through a coupling capacitor. The input frequency range is 0.4 to 12 MHz This pin can be used effectively for FM IF or AM IF counting.		
71	LCTR	Universal counter input. Input must be supplied through a coupling capacitor when the input frequency is in the range 100 to 500 kHz . No input coupling capacitor is required when the input frequency is in the range 1 Hz to 20 kHz . This pin can be used effectively for AM IF counting. This pin can also be used as a normal input port.	Input	
69	ADI	A/D converter input. This converter requires 1.28 ms to perform a 6-bit sequential comparison conversion. Full scale (a data value of 3 F (hexadecimal)) corresponds to $(63 / 96)$ time V_{DD}.	Input	
66	$\overline{\text { INT }}$	External interrupt request input. An interrupt occurs when the INTEN flag is set with the SS instruction and a falling edge is input. This pin can also be used as a normal input port.	Input	
77 78	$\begin{aligned} & \mathrm{EO} 1 \\ & \mathrm{EO} 2 \end{aligned}$	These pins are used as the reference frequency output and the phase comparator error output for the programmable divider. A charge pump circuit is built in. EO1 and EO2 are the same.	Output	
72	$\overline{\text { SNS }}$	Input used to recognize power failures when the IC is in backup mode. This pin can also be used as a normal input port.	Input	
67	$\overline{\text { HOLD }}$	Input used to set the IC to hold mode. The IC switches to hold mode when the HOLDEN flag is set with the SS instruction and the $\overline{\mathrm{HOLD}}$ pin is set low. A high-voltage handling circuit is used so that this pin can be linked to the power switch in typical systems.	Input	
68	$\overline{\mathrm{RES}}$	System reset input. Applications must hold this input low for at least 75 ms to effect a power on reset. To start a reset, this pin must be held low for a full 6 base clock cycles.	Input	
1 80	$\begin{gathered} \text { XIN } \\ \text { XOUT } \end{gathered}$	Crystal oscillator connections (4.5 MHz) Feedback resistors are built in.	Input Output	
$\begin{gathered} 2 \\ 79 \end{gathered}$	$\begin{aligned} & \text { TEST1 } \\ & \text { TEST2 } \end{aligned}$	IC test pins. These pins must be either left open or connected to V_{SS}.	-	-
$\begin{gathered} 31,73 \\ 76 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{SS}} \end{aligned}$	Power supply	-	-

Mask Options

Option	Selections
WDT (watchdog timer) selection	WDT present
	WDT absent
Port A (key input port) pull-down resistor selection	Pull-down resistors enabled
	Pull-down resistors disabled
Cycle time selection (3 options)	$2.67 \mu \mathrm{~s}$
	$13.33 \mu \mathrm{~s}$
Switching of the LCD segment driver pins to function as general-purpose output ports	$40.00 \mu \mathrm{~s}$
	GCD ports

Development Environment

- The LC72P321 is used as the OTP version.
- The LC72EV321 is used as the evaluation chip.
- A total debugging system is available in which an evaluation board (TB-72EV32) and a multi-function emulator (RE32) are controlled by a personal computer.

LC72321N, LC72322N, and LC72323N Instruction Set

Abbreviations:	ADDR	: Program memory address [12 bits]
	b	: Borrow
	B	: Bank number [2 bits]
	C	: Carry
	DH	: Data memory address high (Row address) [2 bits]
	DL	: Data memory address low (Column address) [4 bits]
	I	: Immediate data [4 bits]
	M	: Data memory address
	N	: Bit position [4 bits]
	Pn	: Port number [4 bits]
	r	: General register (One of the locations 00 to 0FH in bank 0)
	()	: Contents of register or memory
	() N	: Contents of bit N of register or memory

Instruction group	Mnemonic	Operands		Function	Operation	Machine code				
		1st	2nd			D15 141312	1110	98	765	321 D0
	AD	r	M	Add M to r	$r \leftarrow(\mathrm{r})+(\mathrm{M})$	01100	0 0	DH	DL	Rn
	ADS	r	M	Add M to r, then skip if carry	$r \leftarrow(r)+(M)$ skip if carry	0100	01	DH	DL	Rn
	AC	r	M	Add M to r with carry	$\mathrm{r} \leftarrow(\mathrm{r})+(\mathrm{M})+\mathrm{C}$	0100	10	DH	DL	Rn
	ACS	r	M	Add M to r with carry then skip if carry	$r \leftarrow(r)+(M)+C$ skip if carry	0100	11	DH	DL	Rn
	AI	M	1	Add I to M	$\mathrm{M} \leftarrow(\mathrm{M})+\mathrm{l}$	0101	00	DH	DL	I
	AIS	M	1	Add I to M, then skip if carry	$\mathrm{M} \leftarrow(\mathrm{M})+\mathrm{I}$ skip if carry	$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	01	DH	DL	1
	AIC	M	1	Add I to M with carry	$\mathrm{M} \leftarrow(\mathrm{M})+\mathrm{I}+\mathrm{C}$	01001	10	DH	DL	I
	AICS	M	1	Add I to M with carry, then skip if carry	$\begin{aligned} & \mathrm{M} \leftarrow(\mathrm{M})+\mathrm{I}+\mathrm{C} \\ & \text { skip if carry } \end{aligned}$	$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	11	DH	DL	1
	SU	r	M	Subtract M from r	$r \leftarrow(\mathrm{r})-(\mathrm{M})$	$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	00	DH	DL	Rn
	SUS	r	M	Subtract M from r, then skip if borrow	$r \leftarrow(r)-(M)$ skip if carry	01110	01	DH	DL	Rn
	SB	r	M	Subtract M from r with borrow	$\mathrm{r} \leftarrow(\mathrm{r})-(\mathrm{M})-\mathrm{b}$	01110	10	DH	DL	Rn
	SBS	r	M	Subtract M from r with borrow, then skip if borrow	$r \leftarrow(r)-(M)-b$ skip if borrow	01180	00	DH	DL	Rn
	SI	M	1	Subtract I from M	$\mathrm{M} \leftarrow(\mathrm{M})-\mathrm{l}$	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	00	DH	DL	1
	SIS	M	1	Subtract I from M, then skip if borrow	$\begin{aligned} & M \leftarrow(M)-I \\ & \text { skip if borrow } \end{aligned}$	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	01	DH	DL	1
	SIB	M	1	Subtract I from M with borrow	$\mathrm{M} \leftarrow(\mathrm{M})-\mathrm{l}-\mathrm{b}$	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	10	DH	DL	1
	SIBS	M	1	Subtract I from M with borrow, then skip if borrow	$\begin{aligned} & M \leftarrow(M)-I-b \\ & \text { skip if borrow } \end{aligned}$		11	DH	DL	1
	SEQ	r	M	Skip if r equals M	$\begin{aligned} & r \leftarrow M \\ & \text { skip if zero } \end{aligned}$	0000	01	DH	DL	Rn
	SGE	r	M	Skip if r is greater than or equal to M	$r \leftarrow M$ skip if not borrow $(r) \geq(M)$	0000	11	DH	DL	Rn
	SEQI	M	1	Skip if M equal to I	$\begin{aligned} & \text { M - I } \\ & \text { skip if zero } \end{aligned}$	$0 \begin{array}{llll}0 & 0 & 1\end{array}$	01	DH	DL	1
	SGEI	M	1	Skip if M is greater then or equal to I	M - I skip if not borrow (M) ≥ 1	$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	11	DH	DL	1

Continued on next page.

Continued from preceding page.

Continued on next page

Continued from preceding page.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
■ SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any and all SANYO products described or contained herein fall under strategic products (including services) controlled under the Foreign Exchange and Foreign Trade Control Law of Japan, such products must not be exported without obtaining export license from the Ministry of International Trade and Industry in accordance with the above law.
■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.

■ Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.

- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of November, 1998. Specifications and information herein are subject to change without notice.

[^0]: Notes:*1. Only possible with the LC72321N
 *2. Only possible with the LC72321N and LC72322N

